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Abstract Whimbrels (Numenius phaeopus) are large

shorebirds that breed in two geographically disjunct

regions in the North American Subarctic and Arctic. Since

the early 1970s, the nesting distribution of Whimbrels in

the Subarctic near Churchill, Manitoba, Canada has chan-

ged, and an area of historic breeding importance was no

longer used as nesting habitat in 2008. We compared aerial

photography of the 2.55 km2 area from 1973 to 1986, to

high-resolution satellite imagery from 2006 to assess

structural habitat change. Comparison of the three time-

period imagery showed that over the 33-year span shrubs

and trees increased in cover by 12.6 and 6.9 %, respec-

tively, whereas other vegetation, including lichen,

decreased by 19.1 %. This localized evidence of shrub and

tree encroachment is accompanied by a decline in Whim-

brel nesting densities from 17–19 pairs (max. 7.45 pairs/

km2) in 1973 and 1974, to 1–2 pairs (max. 0.78 pairs/km2)

in 2007, and 0 pairs in 2008. Change in vegetation structure

has important implications for the long-term viability of

Subarctic and Arctic breeding shorebird populations.

Keywords Whimbrel (Numenius phaeopus) � Shorebird �
Subarctic � Shrub encroachment � Tundra reduction �
Climate change

Introduction

Since the 1950s, the earth has warmed at a rate beyond

documented natural variation (Le Treut et al. 2007). On

land, there is evidence of a pan-Arctic change in vegeta-

tion, including increased shrub cover, tree line advance-

ment, and decreased open tundra, wetland habitats and

arctic ponds (Cornelissen et al. 2001; Smith et al. 2005;

Riordan et al. 2006; Tape et al. 2006). Climate change

scenarios predict that the amount of tundra habitat will

shrink by 33–44 % by 2099 (Feng et al. 2012). Terrestrial

changes such as shrub encroachment and tree line

advancement could contribute to further climate warming

through positive feedback processes (Chapin III et al. 2005;

Sturm et al. 2005). These changes alter the structure and

function of Subarctic and Arctic ecosystems with poten-

tially severe consequences for biodiversity.

Lichen-heaths and wetlands of the Subarctic and Arctic

are key breeding habitats for shorebirds (Donaldson et al.

2000; Meltofte et al. 2007), which have evolved to nest in

open, mostly treeless landscapes (Henningsson and Aler-

stam 2005). Shorebirds undertake long-distance migrations

to breed in the Subarctic and Arctic during the summers to

capitalize on food availability, lowered competition, and

predator and disease avoidance (McKinnon et al. 2012).

Whimbrel (Numenius phaeopus) winter in scattered num-

bers from South Carolina on the Atlantic coast and

southern Vancouver Island on the Pacific Coast, to as far

south as the tip of South America, including Caribbean and

other offshore islands, while breeding in southern and

western Hudson Bay regions, and in Alaska, Yukon and the

northwestern region of the Northwest Territories (Skeel

and Mallory 1996). Data on bird species shifting their

range to cooler isotherms are accumulating (Thomas

and Lennon 1999; Austin and Rehfisch 2005; Zuckerberg
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et al. 2009). In the Subarctic and Arctic, shorebird species

ranges are generally hypothesized to shift northward with

shifting vegetation. Therefore, species that breed at the

highest latitudes will be squeezed between the advancing

tree line and the Arctic Ocean, although the adaptive

capabilities of species are not fully understood (Callaghan

et al. 2005). In addition, the abundance and diversity of

predators and parasites may increase, and Subarctic and

Arctic species may be out-competed by southern counter-

parts (Hersteinsson and MacDonald 1992; Kutz et al. 2005;

Hudson et al. 2006). Both the magnitude and rate of cli-

mate warming in northern breeding grounds are currently

greater than that occurring in habitats occupied during

other life stages of migrant shorebirds (Meehl et al. 2007),

and the consequences of climate change constitute leading

contemporary threats to shorebird populations (North

American Bird Conservation Initiative Canada 2012).

Monitoring changing vegetation and shorebird habitat

use is important for understanding localized and broad-

scale responses to climate change, including the rate at

which change is occurring and how populations are

potentially responding. Limited, plot-based monitoring

exists in the north, and remote sensing imagery is often too

coarse to measure change at fine-scale, local levels. Near

Churchill, MB, field observations showed that Whimbrels,

although still common in the region, were no longer nest-

ing in some areas where they were documented to be most

common in the 1960s and 1970s (Skeel 1976; Jehl 2004).

During the 1970s and 1990s, Skeel (1976, 1983) and Lin

(1997), respectively, published Whimbrel nesting distri-

bution data in a hummock-bog study area, adjacent to the

tree line, where they were historically most common, and

nested in densities three to four times greater than in other

habitats (Skeel 1983). The objective of our study was to

investigate changes in habitat within a 2.55 km2 area,

which encompasses Skeel’s (1976, 1983) hummock-bog

study area, over three time periods using aerial photogra-

phy and satellite imagery. We also discuss alternative

hypotheses to explain the habitat change and decline of

nesting Whimbrels in the same area from 1973 to 2008,

including the effects of isostatic rebound, increased num-

bers of Canada Geese (Branta canadensis) and Common

Ravens (Corvus corax), and the effect of the adjacent

roads.

Materials and methods

Study site

Churchill, Manitoba, Canada (58�440N, 94�40W; Fig. 1) is

located on the west coast of Hudson Bay at the mouth of

the Churchill River and is considered part of the Hudson

Plains ecozone, characterized by a Subarctic ecoclimate

(Kottek et al. 2006). The Churchill region is a transition

zone, with boreal forest to the south and tundra along the

Fig. 1 Map of the Churchill, MB, Canada region courtesy of Pete Kershaw (modified) showing the location of the study area
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coast and to the north. The soils currently experience

continuous permafrost, resulting in poor drainage and

numerous shallow ponds and lakes (Brown et al. 2014).

The lands are flat lowlands (\50 m elevation) that are

experiencing isostatic rebound at a rate of 0.90 m/century

(Sella et al. 2007). The average annual, January and July

temperatures are -6.5, -26.7 and 12 �C, respectively

(Environment Canada 2014). Winters are cold and long,

and summers are brief, with June to September as the only

months with average daily temperatures above 0 �C and

with 0 cm average snow depth (Environment Canada

2014).

The 2.55 km2 study area is characterized by hummock-

bog habitat with some higher treed areas, bounded by

gravel roads to the north and east and by forest to the south

and west. This study area encompasses the historically

important hummock-bog habitat described by Skeel

(1983). The area is just west of the Churchill airport, which

was built in 1942. The northern edge of the study area is

approximately 3 km inland from the coast, and the western

edge is approximately 5.5 km inland from the Churchill

River. The main tree species are larch (Larix laricina),

black spruce (Picea mariana) and white spruce (Picea

glauca). The main shrub species are dwarf birch (Betula

glandulosa) and Lapland rosebay (Rhododendron lappon-

icum). Northern bilberry (Vaccinium uliginosum), snow

willow (Salix reticulata) and sweet gale (Myrica gale) and

form a minor component of the understory.

Imagery acquisition and preparation

In July 1973, Skeel had the hummock-bog study area aerial

photographed at 610 m in altitude at a scale of 1:8,000.

Although the original prints were not located, Skeel provided

contact prints containing 35 photos of the area with

approximately 40 % overlap between photos. One contact

sheet containing four photos was missing. The 1986 imagery

consisted of 10, 900 9 900 aerial photographs with 60 %

overlap purchased from the Manitoba Government. The

photos were taken at a scale of 1:10,000 with a Zeiss

Lameogon B lens, focal length 152.176 mm, on July 10,

1986. The 1973 and 1986 aerial photograph imagery were

scanned on an Epson Expression 10000XL in professional

mode at 1200 dpi in 8-bit grayscale resulting in 17 and 21 cm

ground sample distance or resolution, respectively. Both the

1973 and 1986 photographs were mosaicked within PCI

Geomatica V9.1 (PCI Geomatics Group 2003) using a

minimum of eight or more well-distributed tie points per

photo. High 60-cm resolution QuickBird satellite imagery

(DigitalGlobe Inc. 2006) of the study area in 2006 was pur-

chased from MDA Geospatial Services. The imagery was

natural color, 3-band pansharpened, 8-bit, mosaicked,

Standard Ortho-Ready product, taken at 17:46 on July 10,

2006, with zero cloud cover and a maximum off-nadir angle

of 11.81�. This product is mapped to an average base ele-

vation, but because the study area has extremely low relief

this was not a concern. The 2006 imagery was georectified

using rational polynomial coefficient (RPC) data provided

by QuickBird and 40 field-acquired global positioning sys-

tem (GPS) ground control points (GCPs). Based on the RPC

and GCP processing, the very low topographic relief of the

study area, the low off-nadir angle, and comparison with

ground sampled distances, it is estimated that the rectified

image had 5–10 m accuracy. A cubic convolution polyno-

mial rectification was performed to rectify the 1973 and 1986

images to the 2006 image within PCI Geomatica producing

three images of the same scale and projection. Although our

positional accuracy is estimated at 5–10 m, the 1973 and

1986 images are rectified to the 2006 image. Having the 1973

and 1986 images rectified to the 2006 image limits potential

sampling error associated with the estimated 5–10 m posi-

tional accuracy of the resulting 2006 image.

Habitat change

A shapefile of the area was created in ArcMap 9.2 (Envi-

ronmental Systems Research Institute 2006) and used to

clip the imagery from the three time periods. A 50 9 50 m

grid was overlaid across the three images within ArcMap,

and large (*100 9 130 cm) printouts were produced.

Within every fourth grid cell (n = 246), percent cover of

the following vegetation, water and substrate classifications

were estimated to the nearest 0.5 % for all three time

periods: Other Vegetation Including Lichen, Shrub, Tree,

Mud, Water, Gravel, and No Data (outside of shapefile or

part of missing imagery for 1973). Broad cover classifi-

cations were estimated, because vegetation structure was

the primary interest and species level identifications were

not possible. Although water and mud cover were esti-

mated, their interpretation is unreliable as annual variation

in precipitation may have been detected rather than a his-

torical trend, and precipitation events prior to image cap-

ture can bias results. Furthermore, the two parameters are

related to some unknown degree (i.e. if water in ponds is

high, mud would correspondingly be lower). Estimates

were made visually from the large-scale prints, using a

stereoscope for the aerial photograph imagery, and on the

computer within PCI Geomatica using the zoom function.

In 2007 and 2008, we recorded GPS location and habitat

class in areas of each of our classifications (Other Vege-

tation Including Lichen, Shrub, Tree, Mud, Water, and

Gravel) to aid in the training of imagery interpretation to

ensure classification accuracy. All classification was com-

pleted by one person.

We report percent cover for each class at each time

period, the mean change in cover (calculated as the percent
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cover of each cell on the more recent image minus the

percent cover of each corresponding cell on the older

image) and the 95 % confidence intervals of this change.

The rates of averaged annual change between the time

periods were also calculated as the difference between the

newer and older image divided by the number of years

between them.

Climate trends

Using climate data from Churchill A station (Environment

Canada 2008) and General Linear Model analysis, we

examined temporal trends of annual average temperature (�C)

from 1970 to 2007 (complete 2008 data were unavailable),

and growing degree days calculated as the cumulative mean

daily temperature degrees above 0 �C from 1970 to 2008.

Nesting distribution and density

Fieldwork was conducted throughout a 75 km2 area in the

Churchill, MB region during the 2007 and 2008 breeding

seasons (Ballantyne and Nol 2011), but for this paper, we

concentrated search efforts for Whimbrel nests within the

2.55 km2 study area described above. Nest site coordinates

from 1973 were obtained from Skeel (1976), and from

1994 from Lin’s (1997) field data (W. Lin, pers. comm.

2009). Nest sites and the areas surveyed were delineated on

1:50,000 digital National Topographic System maps

(Natural Resources Canada 2007) within ArcMap 9.2

(Environmental Systems Research Institute 2006).

Results

Habitat change

Over the 33-year span of the three images, we documented

significant increases in Shrub and Tree classifications, and a

significant decrease in Other Vegetation Including Lichen

(Table 1). The annual rate of change, adjusted for the length

of the time period, of Tree cover increase was relatively even

between the two time periods, while the rate of annual

increase in Shrub cover more than doubled in the latter time

period (Table 2; Fig. 2). Other Vegetation Including Lichen

and Gravel decreases were relatively even between time

periods. Changes in Mud and Water cover could not be

reliably interpreted due to possible precipitation bias and the

unknown degree to which the two are related.

Climate trends

From 1970 to 2007, the average annual temperature in Chur-

chill significantly increased by 1.78 �C (average

temperature = -102.702 ? 0.048 (year), F1,36 = 5.85,

P = 0.01, R2 = 0.14; Fig. 3a). Annual growing degree days

([0 �C) also increased significantly (GDD = -13743.9 ?

7.5 (year), F1,36 = 11.42, P\0.01, R2 = 0.24; Fig. 3b). From

1970–2008, 285 growing degree days ([0 �C) were gained,

which is the equivalent to that of an average summer month

(June = 203.9, July = 382.6, August = 370.2).

Nesting distribution and density

Whimbrel nesting density in the study area during 2007

and 2008 was low in comparison with that reported by

Skeel (1983) in 1973 and 1974, and by Lin (1997) in

1994–96 (Fig. 4). In the 1970s, Skeel (1983) reported

17–19 nesting pairs within our 2.55 km2 study area (max.

7.45 pairs/km2), and in the 1990s, Lin (1997) reported

markedly fewer, 5–7 nests (max. 2.75 pairs/km2). In 2007,

only two nests, one of which was likely a re-nest, were

found. In 2008 no Whimbrel nested in the area. In 2007 and

2008, five pairs nested in a 1.6 km2 area of mixed sedge-

meadow and lichen-heath tundra habitat just north of the

study area, where Skeel (1976) had not reported any;

however, Skeel did not search the area extensively (Fig. 4).

Discussion

Habitat and climate change

The increase in Shrub and Tree cover in our study area

provides quantitative evidence of recent, localized chang-

ing Subarctic terrestrial environment near Churchill, MB.

These habitat changes coincide with a warming trend and

declining Whimbrel nesting densities in the area of his-

torical nesting importance. The observed habitat change

and warming trend add to growing evidence from Alaska

(Suarez et al. 1999; Rupp et al. 2001; Tape et al. 2006),

eastern Hudson Bay (Caccianiga and Payette 2006) and the

Table 1 Percent cover classification averages and standard deviation

(in parentheses) of six cover classes for 1973, 1986 and 2006 images

(n = 246 grid cells)

Habitat cover class 1973 1986 2006

Other Vegetation Including

Lichen

50.2 (23.3) 42.9 (23.8) 31.1 (22.5)

Shrub 5.1 (6.8) 7.6 (10.6) 17.7 (16.1)

Tree 3.4 (8.9) 5.9 (11.6) 10.3 (12.5)

Mud 1.2 (2.9) 1.4 (3.8) 6.5 (9.4)

Water 30.9 (24.2) 33.6 (27.1) 26.5 (25.4)

Gravel 3.4 (10.2) 3.1 (10.3) 2.3 (8.1)
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Holarctic (Epstein et al. 2013) documenting climate

warming, shrub encroachment and tree line advancement.

In the Churchill region, Girardin et al. (2005) found that tree

growth was strongly positively correlated with temperatures

throughout June, July and August, the period when most annual

growing degree days are accumulated. Historical notes and

paleoecological studies also support the projections of vegeta-

tive response to climate. In Churchill, Samuel Hearne, a

northern explorer (1745–1792), noted a major southward shift

in the tree line due to cooled climate at the end of Little Ice Age

(1450–1760; Hearne 1795). Tree ring chronological studies

also show that tree growth covaries with temperature proxi-

mately and that the tree line covaries with climate over larger

time scales, showing that tundra habitats were invaded by

boreal trees in the period of climate warming following the

Little Ice Age (MacDonald et al. 2000; Pellatt et al. 2000;

Kullman 2002). In tundra of Northeastern Siberia, the growth

of two species of shrubs studied were both found to be most

influenced by early-summer temperatures, with wider growth

rings correlated to higher early summer temperatures (Blok

et al. 2011). Shrub and tree growth are also associated with

positive feedback processes. Warming air temperatures result

in warming soil temperatures and increased active layer depth,

while shrubs and trees trap snow, insulating and increasing

winter soil temperatures (Sturm et al. 2005). Furthermore,

increased shrub and tree growth decreases the terrestrial albedo

effect, which will further force climate warming (Chapin III

et al. 2005).

The relationship between habitat and climate change is

confounded by isostatic rebound in the Hudson Bay

Lowlands (Sella et al. 2007). Part of the observed vegeta-

tion change is due to natural terrestrialization, as the land

isostatically rebounds post-glacial retreat. The region

experiences high rates of rebound, 0.90 m/century near

Churchill (Sella et al. 2007). This rate is not projected to be

overcome by sea level rise in the near future (Riley 2011).

Between 1973 and 1986, the earlier time period of our

study, the calculated annual increase for Shrub and Tree

cover was 0.18 % each, with Other Vegetation Including

Lichen decreasing by 0.52 %. Neither the average annual

temperature nor growing degree days during the same time

span showed a significant warming trend; these climate

trends become significant when data span the longer time

series (1970-2007/2008). The observed habitat change

during the earlier period may be explained largely by iso-

static rebound and associated terrestrialization processes.

However, considering the recent rate of uplift is steady

during our study period (Sella et al. 2007), and that the rate

of increase in Shrub cover that we document in the latter

period (1986–2006) was more than twice that of the earlier

period (1973–1986), it is likely that climate warming is a

primary contributor during the latter period. At a pan-

Arctic scale, correlations between warming caused by

Table 2 Mean percent change in cover classes between newer and older images for each grid cell with 95 % CIs, and average annual change

calculated as the mean percent cover change over period divided by the number of years within the period

Cover class Mean cover change (%) over period Annual change (%)

1973–1986 1986–2006 1973–2006 1973–1986 1986–2006 1973–2006

Other Vegetation

Including Lichen

27.26 (29.81, 24.72) 211.83 (215.05, 28.62) 219.10 (222.49, 215.71) -0.56 -0.59 -0.58

Shrub 2.52 (1.27, 3.77) 10.08 (8.02, 12.14) 12.60 (10.70, 14.51) 0.19 0.50 0.38

Tree 2.50 (1.60, 3.39) 4.38 (3.37, 5.39) 6.88 (5.66, 8.10) 0.19 0.22 0.21

Mud 0.12 (-0.44, 0.69) 5.11 (3.88, 6.34) 5.23 (4.03, 6.44) 0.01 0.26 0.16

Water 2.73 (0.28, 5.12) 27.13 (29.76, 24.49) 24.40 (27.03, 21.77) 0.21 -0.36 -0.13

Gravel -0.32 (-0.99, 0.35) -0.77 (-1.63, 0.09) 21.09 (21.96, 20.22) -0.02 -0.04 -0.03

Bolded values indicate changes where the 95 % CIs do not overlap 0

Fig. 2 1973, 1986 and 2006 imagery samples showing increased

shrub and tree cover in the study area. Includes copyrighted material

of the province of Manitoba and DigitalGlobe, Inc., all rights reserved
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Fig. 3 Climate trends for

Churchill A station

(Environment Canada 2008).

a Average annual daily

temperature (�C) from

1970–2007 (P = 0.01).

b Cumulative annual growing

degree days [0 �C from

1970–2008 (P \ 0.01)

Fig. 4 Whimbrel (Numenius phaeopus) nest and suspected nest

distribution and area searched in and near the study area in 1973

(Skeel 1976), 1994 (Lin 1997), 2007 and 2008 near Churchill, MB.

Nesting distribution in 1974 (Skeel 1976) strongly resembles the 1973

distribution map provided. Likewise, nesting distribution in 1995 and

1996 (Lin unpubl. data) strongly resembles the 1994 distribution map.

The area north of the east-west road bordering the study area was

searched, but not intensively for nests by Skeel in 1973 and few

Whimbrel were noted there (Skeel 2009, pers. comm.). Includes

copyrighted material of Natural Resources Canada, all rights reserved
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anthropogenic climate forcing and shrub and tree

encroachment are reported (Kaplan and New 2006; Tape

et al. 2006; Bogaert et al. 2007). Despite the unknown

degree to which isostatic rebound and climate change are

each contributing to habitat change, anthropogenic climate

warming will increase the rate at which ecosystem changes

occur, and considering the long-term nature of climate

change, will affect these process for centuries to come

(Solomon et al. 2009).

Roads can also alter habitat in Subarctic and Arctic

environments. In a study in the Northwest Territories near a

mine site (Male and Nol 2005), there was significantly

higher soil moisture at sampling sites adjacent to roads than

at reference sites but impacts of roads on snow–water

equivalents were restricted to the first 20 m from the road.

Additionally, there was no significant impact of roads on

the composition of shrubs, forbs or lichens (Male and Nol

2005). The roads bounding our study area were built prior

to the 1970s and the habitat changes documented occur

thoughout the 2.55 km2 study area, with the exception of

Gravel that decreased slightly adjacent to the roads.

Nesting habitat and biological factors

In the mid-1970s, Whimbrels nested within our study area at

some of the highest densities ever reported for this species in

North America (Skeel 1983). In 2007, only one pair, and in

2008, no pairs nested in the area; however, Whimbrels are still

present outside of this study area and nest commonly on

hummocks and ridges, and in habitat dominated by sedge and

standing water, or lichen and Dryas heath, while avoiding

shrubby and treed areas (Skeel 1983; Ballantyne and Nol

2011). In our previous study, no Whimbrel nested in areas with

[76 trees within 30 m of a nest site, and only one pair (out of

44 sampled) nested in an area with[38 trees within 30 m of a

nest site. Similarly, no Whimbrel nested in areas with

[17.5 % tall shrub cover (within a 150 m radius circle cen-

tered on the nest) while most (41/44 = 93.2 %) nested in

areas with\10 % tall shrub cover (Ballantyne and Nol 2011).

The overall percent cover of shrubs in the 2006 image of the

study area (17.7 %) just exceeds this apparent threshold.

Whimbrels and other shorebirds are believed to have evolved

to use open habitat types that allow visual predator detection

(Götmark et al. 1995). Trees also provide more perches and

nesting habitat for potential avian predators such as Common

Ravens (C. corax) that commonly prey on Whimbrel eggs and

young in the Churchill region (Ballantyne and Nol 2011).

Nesting habitat use data, coupled with the correlation

between shrub and tree encroachment and decreased Whim-

brel nesting densities in the study area, are suggestive, but does

not necessarily imply causality. Other biological changes have

also occurred in the study area during the 33-year span: both

numbers of grazing and nesting Canada Geese (B. canadensis)

and Common Ravens (C. corax), a main egg predator, have

increased. In the early 1930s, Taverner and Sutton (1934)

wrote that Canada Geese were common transients that bred

sparingly in the Churchill region. Of Common Ravens, they

wrote that they were not a common permanent resident, but

that they likely nested in the vicinity. Neither Canada Geese

nor Common Ravens were common in the study area in the

1970s (Skeel 2009, pers. comm.). Currently, nesting Canada

Geese are abundant in the study area, and migrating geese also

use the area for grazing. Canada Geese uproot roots and rhi-

zomes and pull shoots of graminoids, resulting in lower

graminoid cover and areas denuded of vegetation, which in

turn, may increase pond temperature and evapotranspiration

(Abraham and Jefferies 1997). These habitat changes as a

result of arctic geese foraging have primarily been docu-

mented for supratidal marshes, not hummock-bog habitat, and

are associated with a decrease, rather than an increase in shrub

cover (Peterson et al. 2013). In addition to the habitat change

that they can cause, Canada Geese that arrive and nest earlier

than Whimbrels may also take the suitable nesting sites on top

of hummocks and ridges. Data on the foraging effects of geese

and reliably interpreted Mud cover data within the study area,

along with a possible mud cover threshold for nesting

Whimbrel would have helped to determine what effect geese

had and a possible other dimension of habitat suitability for

nesting Whimbrel. Data on hummock and ridge availability

on Whimbrel arrival would aid in determining whether Can-

ada Goose nesting abundance also explains the decline in

nesting Whimbrel.

In 2007 and 2008, we recorded Whimbrels nesting in a fairly

high density (*3 pairs/km2) in a small area (*1.62 km2) just

north of Skeel’s main study area (Fig. 4). This area of mixed

sedge-meadow and lichen-heath tundra habitat is compara-

tively more open with less shrub, tree and mud cover. In 2007

and 2008, the area also had fewer nesting Canada Geese;

however, a pair of Common Ravens frequented both areas. The

current use of the area just north of the study area, and presence

of Common Ravens in both areas provides support for the

hypothesis that Whimbrels moved out of the area of interest

because of vegetation changes, increasing numbers of Canada

Geese, or a combination of these factors.

Scenarios predicting the reduction of tundra ecosystems,

the encroachment of shrubs, the advancement of tree lines, as

well as the drying of Arctic and Subarctic ponds will result in

decreased nesting habitat for Whimbrels and many other

shorebird species across the Hudson Bay Lowlands, an

important shorebird nursery area (Abraham and Keddy 2005).

Given the encroachment of shrubs and trees documented here,

data on Whimbrel nesting habitat (Ballantyne and Nol 2011),

and the decline in nesting density of Whimbrels in the area of

interest, habitat change and drivers such as climate change,

should be considered as hypotheses when investigating dis-

tribution changes and shorebird declines.
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